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Dynamics of a misaligned astigmatic twisted Gaussian beam
in a Kerr-nonlinear parabolic waveguide
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Using the Galerkin criterion in the basis of flexible generalized Gaussian modes, the equations of motion are
derived for the parameters of a misaligned astigmatic twisted Gaussian beam in an axially symmetric nonlinear
medium. Nontrivial features of the beam dynamiegy., phase locking, cycle generation, nonlinear symmetry
change in a parabolic waveguide with Kerr nonlinearity are reveal&1063-651X%99)00312-9

PACS numbgs): 42.65.Wi, 42.65.Sf

[. INTRODUCTION tant but insufficiently studied class of systems with
alternating sign of the phase velocity divergence. In Sec. lll,
Modeling of axially nonsymmetric beams in axially sym- we use this model to analyze the complex behavior of a
metric media is a necessary part of theoretical study of mismisaligned Gaussian beam in a waveguide medium having
aligned lasers and optical waveguidds-5]. Complex re- parabolic profile of the linear refraction index and Kerr non-
gimes of light beam propagation in an optical fiber have beefinearity below the self-focusing threshold. In Sec. IV, we
previously found in the limit of the geometric opti¢see  discuss the results of testing the method proposed by com-
Ref. [6]). The wave picture of the beam dynamics can beParing its results with those of direct numerical integration.
most generally obtained by means of the direct numerica)/€ @lS0 mention the beam collapse problem and the connec-
solution of the relevant boundary problem. This approach /" With nonlinear dynamics models relevant to other fields
widely used, e.g., in the study of transverse pattern formatioﬁf physics(e.g., quantum optics and statistical mechanics

[7], spectral characteristid8], and nonlinear interaction of
beams[9]. Recently, explicit solutions for some particular Il. DERIVATION OF THE DYNAMICAL SYSTEM

classes of completely integrable optical beam systems have We start from the scalar parabolic wave equation govern-

been derived analyticallj10]. Our interest will be focused ing the complex slow amplitudg of the electric field of the
on semianalytic approaches that provide an approximate dggam

scription of the beam dynamics in terms of a limited set of
parameters, depending on the longitudinal coordinate ) J
Originally aimed at simplifying the calculations, such meth- H¢E{4i 5+Vf+x
ods at present seem to be more important as a source of
dynamical models demonstrating nontrivial behavior.

In earlier paper$8,11,13 we have suggested an approxi-

¥=0, @

where V2 = 9%/ 9x?>+ 9?1 9y? is the transverse Laplacian re-

i thod using G . be funcii h sponsible for diffraction, the transverse coordinatgs are
mate method using Laussian probe tunctions WNoS€ parame. aq 1o the typical radiua of the beam, the longitudinal

eters are determined by Galerkin's criterion in the basis of g jinatez is scaled to the corresponding diffraction length
small number of flexible Gaussian modes. The procedurg _ .2/> | being the wavenumber. The complex suscepti-
yields a set of first-order differential equations that governbility X:’X’HX" is, generally debendent on the coordi-
the dependence of the beam parameters upomhis ap- nates and the field amplitude. We seek the approximate so-

proach is closely related to the well-known metha8,14,5 ]1ution of Eq. (1), having the generalized Gaussian form
in which a reduced description of beams is given in terms o '

the beam intensity moments. In fact, it can be shown that the _ B 2 12 "2
beam parameters of RefE3], [11], and[12] can be ex- Yo=AlZ)ex — (n(2)X""+ B(2)y " F+i1&(2)X
pressed via the complex field generalized momdnts| +ie(2)y"?)], (2)
whose definition is analogous to that of the quantum me-
chanical average. In contrast to the classical method of mayhere the coordinateg’,y’ and x”,y” are expressed in
ments[13,14,9, our approach is equally convenient both for terms of the laboratory coordinatesy as
conservative and dissipative nonlinear media.

In Sec. Il we extend the technique of Rdf8], [11], and
[12] over the misaligned Gaussian beams of the most general
type with astigmatism, shift, deflection, and twist taken into
account simultaneously. The resulting set of equations for
the beam variables is free of limitations inherent to ray optics

X' =[x=x(z)]cose(2) +[y—yi(2)]sine(2);

y'=—[x=x(2)]sine(2) +[y—Y(2)]cose(2); (3

[5] and aberrationless theof$,4]. Consideringz as an evo- X" =[x=xp(2)]Jcosb(2) +[y—yp(2)]sin6(2);
lution variable(“time” ), we obtain a finite-dimensional non-
linear dynamical model which appears to represent an impor- y'=—[x—Xp(2)]sin6(2) +[y—yp(2)]cosh(z). (4)
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From Egs. (2), (3), and (4) it follows that |A(2)|? get a closed set of equations for the 12 beam variables it
=4l ?lxr—0y'—0=1(2) is the maximal intensity of the appears to be enough to use six orthogonality conditiéhs
beam,(z) and B(z) are the inverse square dimensions ofwith (m,n)=(0,0),(0,1),(1,0),(1,1),(0,2),(2,0). Solving
the beam spoté(z) ande(z) define the principal values of these equations with respect to the derivatives, we finally
the wave front curvature. The elliptical beam spot is shiftedget:

by x,(2),y,(z) from the laboratoryz axis, its principal axes

being turned by the angl@(z)_ with respect to the Iaboratory dl (20(x"|00)  (02x"|00) (00| x"|00) .

xOy frame. The wave front is a second-order surface shifted —=1| é+¢&— - - ;

by X,(2),Yp(2) and turned by the anglé(z) with respect to z 2\2 2\2 2

the laboratory frame. Thus, the setzdlependent parameters @)
l,7,8,¢,&,0,0,X,Y1,Xp,Yp Plus the phase arg( forms a

complete list of the beam variables. To eliminate singulari- dy 1
ties, we introduce the average beam slope angles - 2(&cog 8+ Sire ) — E<20|X”|00> ;

8

a(2)=£&((xp,—x))cosf+ (yp—y,)sind), y(z2)=e((Xp

—X))sin6—(y,—Yy,)cosb), dg

d—=,8_2(§sinz 5+¢&cos 8)— f<02|x"|oo> 9

instead of the original wave front shift variables,(y,) that
may be infinitely large as the wave front curvature tends to
zero. dé¢ _— 5 1 ,

The statement that a certain functignis an exact solu- d—z=§ — 7% cog 56— B2 sir? 5+ E[WQOD( |00)cos’ 5
tion of Eq. (1) is, obviously, equivalent to the statement that
the functionHy is orthogonal to a complete orthonormal _ JnB _
basis in the Hilbert space with the scalar product defined as + (02 x'|00)sir? 5]+T'8<11|X'|00>5m 26, (10
an integral over the beam cross sectioif )= [ ¢* ¢dS. If
the basis is reduced to a finite set of functions, this orthogo-
nality condition provides a criterion for choosing the best de
approximate solution from a given class of functid@zaler- dz
kin criterion). Following the approach of Refg3], [11], and

=g2— p?sirf6— B2 cod 5+—[7;<20|X |00)sir? &

2

[12], we choose the basis to be a set of generalized Gaussian ) B ) _
modes(mn|=|m),|n),, where +B(02 x'|00)cos 61— — (11]x’|00)sin 25;
|0)x=Nycexi — 7x'2—ix"2]; (1D
— _ 12 __; n27.
|O>y NyeXF[ By iey"]; de 7+ / ,
, , a4z sn252( ,3)( §)+2( )(1]J X"|00);
|1>x:X \/477|0>x; |1>y:y \/4:8|0>y; (12)
1_47])(/2 _ ﬁyIZ
2= 0 (2= [0y ®) do__ B-7 B
2 —=sj - c !
V2 2 42~ SN 205 " 3iE 508 2(1Ux 100
whose basic mode is proportional to the probe functign sin2s
(2), Ny,N, being the normalization coefficients. The modes — = [B(02x'[00) — 7(20[x"|00) ];
(5) are orthonormal andz dependent via the parameters 2\/5(5— )
n,B,&,e as well as via the shift and rotation of the coordi- (13)
nate framesx’Q’y’ andx”Q"y”. Using this basis we apply
the Galerkin criterion to the probe functiaf,. Each of the
orthogonality conditions dx ) sing
a4z =@ CoSf+ ysin 0+m<01|)("|00>
(mn|Fyo)=0 (6)
with m,n=0,1,2 ... yields a complex equation that involves _C_¢<1o| x"|00); (14)
the beam variables and their first-order derivatives with re- 4\/—
spect toz. The integration is simplified if performed in the
coordinate framex’Q’y’. For linear homogeneous media, dy,
I:lz,lxo is a quadratic polynomial ir’,y’ that makes the inte- rE L~ asing— ycoso— <01| x"|00)
gration straightforward. Generally,depends upon the trans- z \/—

verse coordinates due to the medium inhomogeneouity
and/or nonlinearity, so that the corresponding integralg of _ﬁuq x"|00); (15)
enter the equations and should be calculated separately. To 4\/_
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da do y , VB ' Zi_zi';s-
P e cosd(10|x |OO>_T sin&(01|x'|00) (
30 -
—isin5<01|X"|oo>+icosé<10|x”|00>; (16) \
4B 4\n
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4\/5 < X’ > 4\/; < i > FIG. 1. On the evaluation of the phase velocity divergence:

(17) separation between the neighboring roas of the equation
[§div(F')dz=0 versus.
Here 6= ¢— 6 is the angle of the beam spot rotation with
respect to the wave front. The equation for #&Jp(s omitted +B 82— 72
since this variable does not enter all other equations andjiv(F')=Sp(J)=5¢+5¢&+cos 25< (e—§&)—
therefore, does not affect the dynamics of the sydteéh n-p
The validity of the generalized Gaussian approximation B—7n

has been tested by comparison of the results with those of +ml Xn|>,
direct integration of the paraxial wave equation using differ-
ent numerical schemd23,24. In the discussion we shall
dwell on this problem for more detalil.

whereJ is the Jacobian matrix.
To demonstrate the long-trace behavior of &) we
. DYNAMICS OF THE BEAM VARIABLES IN A plotted the distance between the adjadéntandi+ 1th ze-
PARABOLIC WAVEGUIDE ros of the integralf3div(F')dz, evaluated numerically, ver-

Consider, for example, a transparent waveguide mediurﬁ“Si (Fig. 2). The complicated periodical behavior of the

with parabolic profile of linear refraction index and Kerr integral is evidence for the zero mean value of the diver-
nonlinearity gence, and, therefore, the dynamical system is conservative.

Our choice of the susceptibility allows a substantial re-
duction of the system dimension from eleven to seven due to
+xnv? x'=0. the separation of the variables,y;,«,y that describe the
misalignment of the beam. Moreover, E¢&4) and(15) can
be easily solved analytically and yield harmonic oscillations
In this case, the integration ovet,y’ to calculate the matrix having the periodlr;=4mR,/\xo. Further reduction to five
elementgnm| x’|kl) in the right-hand sides of Eqé7)—(17)  dimensions occurs under the initial condition®# 0. Then,

x2+y?

X' =xo| 1-
( RS

is easily performed analytically. We get ¢ and 6§ are constants that means invariant orientation of the
propagating beam spot and phase front. In this case, the
Xo _ equations forx, y possess harmonic solutions with the same
(01 x'|00)= ——=(x, sing—y, cose); period T;. Physically, it means that in a linear parabolic
RO‘/E waveguide, the projection of the beam spot center trajectory
on the transverse plane is, generally, an ellipse.
(101x'100) = — =5 °=(x, cosg +y; sing);
Ro\/7—7 A. Stationary solutions
The conditions of the stationary beam propagation corre-
(11x']00)=0: (02 x'|00)= Xo 1 Xnl sponding to nonlinear waveguide modes can be written as

_—+ N
R 2\28 42 follows:

8=0, 7=p=1xu/16+ I*x5/16+ xo/(4RY),

Xnl

Xo
! == —+—F.
(20 x'[00) RE 2427 l 42 (18)
e=¢=0.
Equations(7)—(17) define a finite-dimension dynamical

system, which is obviously nonlinear, even whegp=0. To

decide formally whether this system is conservative or dissiin this case the dimension of the system is reduced to five,
pative, let us consider the divergence of the phase velocitwhich allows an analytical study of its stability.

vectorF’ whose coordinates are the right-hand sides of Eqs. The eigenvalues of the Jacobian matrix on the stationary

(7)—(17): solution are
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The real parts of all eigenvalug¢kyapunov exponenjsare 06 Tt eeciim

zero. This corresponds to a Hopf-like bifurcation in which

the stationary points of the phase space lose their stability by ]
expelling a trajectory. Below we shall prove that this trajec- 024
tory is a stable orbit whew,, is zero.

04+

0.0

B. Periodical and quasiperiodical solutions 024

Consider a linear waveguidg {,=0). In general, the sta- 1 weRLLiIiros T
bility analysis of periodical solutions requires explicit calcu- 049 )
lation of the monodromy matri¥. However, we can avoid 095 100 105 1.10 115
this calculation by making use of the numerical observation M
that the periodr of an oscillating solution of Eq$7)—(17) is ]
equa| to the period’lin of the Corresponding So|uti0g|”n of FIG. 3. Poincaresection in (ﬂ,f) projection. HOpf bifurcation

the linearized equations. The monodromy matyixcan be (&, (b) and mutual phase locking betwegny,, andé (c).

found from the relationg;;,(z+T)=Y(T)g;n(2). Since we

observedT=T,, in all numerous examples considered, webeam dynamics is characterized by a superposition of stable

can conclude thaY is a unit matrix. Hence, the multipliers of nonharmonic oscillations of the inner variabléstensity,

the periodical solution are equal to one and the phase trajespot dimensions, wave front curvature, gtwith the period

tory is a stable orbit. T, and stable harmonic oscillations of the misalignment vari-
In low-dimensional systems, it is well known that for a ables with the period;=2T,.

“supercritical” Hopf bifurcation, the eigenvalues have the  Under the conditiony, # 0 (nonlinear waveguidethe ei-

structureh = *iw, Wherew is the frequency of the oscilla- genvaluesn,s (19) become dependent on the dynamical

tions arising. In our case fog, =0 the expression$l9)  variables. In this case, a quasiperiodical regime takes place.

yield the periodT,=27R,//xo. Note, that Z,=T,, where  This is a manifestation of nonlinear interactigiross-

T, is the period of the harmonic motion of the beam as amodulation of the dynamical variables due to which the new

whole. We can summarize that in a linear waveguide, thdrequencies arise that are not integer multiples of each other.
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FIG. 5. Spectral representation gfat y,=0.08 (a),0.1 (b).

alignment variables X ,y,,«,y) and the variables
(n,B,e,€) corresponding to the “inner” degrees of freedom
FIG. 4. Birth of cycles in the sectiony &) for zero initial twist ~ of the beam.
(a), (b) and degeneration of this effect for the beam with tvst Since the Poincarsection surface may be chosen in an
arbitrary way, one can observe the mutual phase locking for
To visualize and interpret the nonlinear dynamics of themore than two dynamical variables. A transformation of the
beam variables we used the Poincarap and phase portrait everywhere dense invariant manifold into an approximately
methods. In all examples presented below, the Poireece  closed orbit is displayed on the Poincanap as a consider-
tion surface has been takenlasconst for the sake of clearer able reduction of the number of distinct poiritee, for ex-
interpretation. Generally, the birth of a quasiperiodical re-ample, Fig. 3 provided that the number of intersections is
gime corresponds to a bifurcation of a periodic orbit into anfixed. In the vicinity of the phase-locking point one can ob-
invariant manifold. In the Poincamap this can be seen as a serve nonstability of the relative phase shift of the variables
Hopf-like bifurcation of the stationary poinffigs. 3a) and  » andx, [Fig. 2@)].

3(b)]. As xp increases, the mutual modulation of the variables
The results presented below were obtained under the fok»,&) [or (B,€)] leads to the generation of a cycle. This
lowing initial conditions: phenomenon can be clearly seen, for example, in the projec-

tion of the phase trajectory onto the plang, £), presented
=50, 7=0.7, B=0.5 &=-04, &=-0.1, in Figs. 4a) and 4b).

To make the nature of cycle generation more clear we
used the spectral representationspfFig. 5). A shift of the

=0. =0.01, =0.01, =-0.01. . . . AT
x=0.02, y; =001, « Y maximum of spectral intensity distribution is seen when

grows.
We fixed the linear waveguide parameters as=5, Ry Now consider a more general case of a beam with non-
=1.5 and varied the Kerr coefficient,, . zero twist (6#0). Formally, one could expect more com-

We start from demonstrating the typical effects that ariseplexity in the beam behavior due to the additional degree of
under the initial condition5(0)=0. As mentioned above, in freedom. However, it is not so, and the dynamics of the
this cased(z)=0 for any z i.e., the beam has no twist. beam actually appears to be even more simple than in the
Sweeping the parametgf, across the intervgl0.08, 0.09%  previous case 06=0. Our previous conclusions concerning
we found a number of nonlinear resonances where the manihe phase locking effect remain valid, while in some other
festations of phase locking involving two or more variablesphenomena under discussion a qualitative difference appears.
could be seen. For couples of variables, this effect is easilyn particular, the comparison of Figs(a®2 and 6 shows that
detected by means of phase portraits. Figures &nd 2b)  in the twisted beam, the irregularity of the phase shift disap-
shows the most informative projection of the phase trajectorypears. Our calculations proved this statement to hold at any
which reveals the mutual phase locking between the misphysically reasonable values of nonlinear refraction index.
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X, ool method described here are particularly strong. However, we
have found many situations when, in spite of the substantial
non-Gaussian distortions of the field profile, the dynamics of
the beam variables, derived from the results of the direct
numerical solution, is very close to that given by the approxi-
mate model7)—(17) of the present paper. In particular, this
is true in the vicinity of stationary points. Thus, we have
strong enough evidence to conclude that in moderate-
. . . s s . . nonlinear media, the generalized Gaussian approximation
n can be used to describe the global beam behavior.
In Kerr-nonlinear media, the beams transversely limited
FIG. 6. Twisted beam: the irregularity of the phase shift be-in two dimensions can collapse when the beam power ex-
tweeny andx, disappears. ceeds the threshold valyé7]. In all the examples consid-
ered above, the beam power was taken to be lower than the
It was also shown that at#0, no cycle generation takes self-focusing threshold. We performed special calculations to
place under the same conditions as considered above. Instegfserve the starting phase of the collapse at higher beam
one can observe only a weak amplitude modulation of thgowers. Small-scale self-focusing, which is known to cause

variables[see Fig. 4c) for (7,8)]. transverse beam instability in Kerr medit8,19, could not
be considered here since the original equations do not take
IV. DISCUSSION the fluctuations into account.

Thus, we have generalized the previously proposed ap-
The approximation of beams by best-fit generalizedproach of Refs.[8], [11], and [12] to derive a finite-

Gaussian functions has, obviously, a limited area of applicagimensional dynamical model of misaligned beam propaga-
tion. These functions are known to be exact solutions of thgjgn. The approximate reduction of the wave boundary
paraxial wave equation only in linear homogeneous medigroblem to a Cauchy problem for a finite set of ordinary
and linear parabolic waveguides. Generally, the beam, evegjfferential equations, made it possible to prove some gen-
initially single Gaussian, acquires distortions while propagateral dynamical properties and to study important regimes
ing through a nonlinear and/or nonparabolic medium due tnalytically. Simple numerical calculations allowed us to
the contribution of higher-order waveguide mod@5]. To  trace the long-term evolution of the beam variables and to

estimate these distortions, we solved Efj) numerically  reveal nontrivial effects, such as phase locking, cycle gen-
[23] using the spectral methdd]. At each step of the propa- eration, etc.

gation problem, the transverse field distribution was decom- From the dynamical point of view, this study may be

posed in terms of more than 200 fixed Gauss-Laguerre radiglonsidered as an application to an optical system of the ideas
and azimuthal modes of the linear waveguide. Diffractiongeveloped earlier for multifrequency interaction in statistical
and refraction were taken into account by means of the Sp”tmechanics[ZO] and in the dynamics of coupled nonlinear
step scheme. One of the criteria for the integral evaluation Obscillators[21,22. Among other closely related problems,
the quality of Gaussian field approximation was based on itgye would like to mention the evolution of coherent states in
mean-square deviatiofMSD) from the result of the direct guantum optic§26—30, since the coordinate representation
numerical SOlUtion, i.e., the square field difference averagegf a coherent state is nothing but a Gaussian with variable
over the beam cross section. For typiga|=0.06, the ratio  parameters. These parameters also satisfy nonlinear evolu-
of MSD to the peak intensity was found to be less than %jon equations, notwithstanding that the fundamental equa-
percent23]. We have also shown that under the conditionstions of quantum mechanics are linear.

of the present study, the non-Gaussian distortions of the |t seems interesting to extend this study over a wider class
beam profile cause minor changes in the values and dynangf waveguide systems including the media with different lin-
ics of the beam spot dimensions and beam rotation angle. ear refraction profiles and nonlinear susceptibilities. In par-

Our next test numerical experimef4] has been per- ticular, we plan similar investigations of beam dynamics in
formed using the multiple-coordinate splitting, implicit abso- gissipative media.

lutely stable scheme and complex scaling providing the cor-

rect transverse bound_ary coqdltlons. The alm_of the study ACKNOWLEDGMENTS

was to test the Gaussian flexible-mode approximaltieags.
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