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Dynamics of a misaligned astigmatic twisted Gaussian beam
in a Kerr-nonlinear parabolic waveguide

L. A. Melnikov, V. L. Derbov, and A. I. Bychenkov
Saratov State University, Saratov 410026, Russia

~Received 13 February 1998; revised manuscript received 2 August 1999!

Using the Galerkin criterion in the basis of flexible generalized Gaussian modes, the equations of motion are
derived for the parameters of a misaligned astigmatic twisted Gaussian beam in an axially symmetric nonlinear
medium. Nontrivial features of the beam dynamics~e.g., phase locking, cycle generation, nonlinear symmetry
change! in a parabolic waveguide with Kerr nonlinearity are revealed.@S1063-651X~99!00312-8#

PACS number~s!: 42.65.Wi, 42.65.Sf
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I. INTRODUCTION

Modeling of axially nonsymmetric beams in axially sym
metric media is a necessary part of theoretical study of m
aligned lasers and optical waveguides@1–5#. Complex re-
gimes of light beam propagation in an optical fiber have b
previously found in the limit of the geometric optics~see
Ref. @6#!. The wave picture of the beam dynamics can
most generally obtained by means of the direct numer
solution of the relevant boundary problem. This approach
widely used, e.g., in the study of transverse pattern forma
@7#, spectral characteristics@8#, and nonlinear interaction o
beams@9#. Recently, explicit solutions for some particul
classes of completely integrable optical beam systems h
been derived analytically@10#. Our interest will be focused
on semianalytic approaches that provide an approximate
scription of the beam dynamics in terms of a limited set
parameters, depending on the longitudinal coordinatez.
Originally aimed at simplifying the calculations, such met
ods at present seem to be more important as a sourc
dynamical models demonstrating nontrivial behavior.

In earlier papers@8,11,12# we have suggested an approx
mate method using Gaussian probe functions whose pa
eters are determined by Galerkin’s criterion in the basis o
small number of flexible Gaussian modes. The proced
yields a set of first-order differential equations that gove
the dependence of the beam parameters uponz. This ap-
proach is closely related to the well-known method@13,14,5#
in which a reduced description of beams is given in terms
the beam intensity moments. In fact, it can be shown that
beam parameters of Refs.@8#, @11#, and @12# can be ex-
pressed via the complex field generalized moments@15#
whose definition is analogous to that of the quantum m
chanical average. In contrast to the classical method of
ments@13,14,5#, our approach is equally convenient both f
conservative and dissipative nonlinear media.

In Sec. II we extend the technique of Refs.@8#, @11#, and
@12# over the misaligned Gaussian beams of the most gen
type with astigmatism, shift, deflection, and twist taken in
account simultaneously. The resulting set of equations
the beam variables is free of limitations inherent to ray op
@5# and aberrationless theory@3,4#. Consideringz as an evo-
lution variable~‘‘time’’ !, we obtain a finite-dimensional non
linear dynamical model which appears to represent an im
PRE 601063-651X/99/60~6!/7490~7!/$15.00
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tant but insufficiently studied class of systems w
alternating sign of the phase velocity divergence. In Sec.
we use this model to analyze the complex behavior o
misaligned Gaussian beam in a waveguide medium hav
parabolic profile of the linear refraction index and Kerr no
linearity below the self-focusing threshold. In Sec. IV, w
discuss the results of testing the method proposed by c
paring its results with those of direct numerical integratio
We also mention the beam collapse problem and the con
tion with nonlinear dynamics models relevant to other fie
of physics~e.g., quantum optics and statistical mechanics!.

II. DERIVATION OF THE DYNAMICAL SYSTEM

We start from the scalar parabolic wave equation gove
ing the complex slow amplitudec of the electric field of the
beam

Ĥc[F4i
]

]z
1¹'

2 1xGc50, ~1!

where ¹'
2 5]2/]x21]2/]y2 is the transverse Laplacian re

sponsible for diffraction, the transverse coordinatesx,y are
scaled to the typical radiusa of the beam, the longitudina
coordinatez is scaled to the corresponding diffraction leng
L5ka2/2, k being the wavenumber. The complex suscep
bility x5x81 ix9 is, generally, dependent on the coord
nates and the field amplitude. We seek the approximate
lution of Eq. ~1!, having the generalized Gaussian form

c05A~z!exp@2„h~z!x821b~z!y821 i j~z!x92

1 i«~z!y92
…#, ~2!

where the coordinatesx8,y8 and x9,y9 are expressed in
terms of the laboratory coordinatesx,y as

x85@x2xI~z!#cosw~z!1@y2yI~z!#sinw~z!;

y852@x2xI~z!#sinw~z!1@y2yI~z!#cosw~z!; ~3!

x95@x2xp~z!#cosu~z!1@y2yp~z!#sinu~z!;

y952@x2xp~z!#sinu~z!1@y2yp~z!#cosu~z!. ~4!
7490 © 1999 The American Physical Society
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From Eqs. ~2!, ~3!, and ~4! it follows that uA(z)u2
5uc0u2ux850,y850[I (z) is the maximal intensity of the
beam,h(z) and b(z) are the inverse square dimensions
the beam spot,j(z) and«(z) define the principal values o
the wave front curvature. The elliptical beam spot is shif
by xI(z),yI(z) from the laboratoryz axis, its principal axes
being turned by the anglew(z) with respect to the laborator
xOy frame. The wave front is a second-order surface shif
by xp(z),yp(z) and turned by the angleu(z) with respect to
the laboratory frame. Thus, the set ofz-dependent parameter
I ,h,b,j,«,w,u,xI ,yI ,xp ,yp plus the phase arg(A) forms a
complete list of the beam variables. To eliminate singula
ties, we introduce the average beam slope angles

a~z!5j„~xp2xI !cosu1~yp2yI !sinu…, g~z!5«„~xp

2xI !sinu2~yp2yI !cosu…,

instead of the original wave front shift variables (xp ,yp) that
may be infinitely large as the wave front curvature tends
zero.

The statement that a certain functionc is an exact solu-
tion of Eq. ~1! is, obviously, equivalent to the statement th
the function Ĥc is orthogonal to a complete orthonorm
basis in the Hilbert space with the scalar product defined
an integral over the beam cross section:^fuc&[*f* cdS. If
the basis is reduced to a finite set of functions, this ortho
nality condition provides a criterion for choosing the be
approximate solution from a given class of functions~Galer-
kin criterion!. Following the approach of Refs.@8#, @11#, and
@12#, we choose the basis to be a set of generalized Gaus
modes^mnu[um&xun&y , where

u0&x5Nx exp@2hx822 i jx92#;

u0&y5Ny exp@2by822 i«y92#;

u1&x5x8A4hu0&x ; u1&y5y8A4bu0&y ;

u2&x5
124hx82

A2
u0&x ; u2&y5

124by82

A2
u0&y ; . . . ~5!

whose basic mode is proportional to the probe functionc0
~2!, Nx ,Ny being the normalization coefficients. The mod
~5! are orthonormal andz dependent via the paramete
h,b,j,« as well as via the shift and rotation of the coord
nate framesx8O8y8 andx9O9y9. Using this basis we apply
the Galerkin criterion to the probe functionc0. Each of the
orthogonality conditions

^mnuĤc0&50 ~6!

with m,n50,1,2, . . . yields a complex equation that involve
the beam variables and their first-order derivatives with
spect toz. The integration is simplified if performed in th
coordinate framex8O8y8. For linear homogeneous medi
Ĥc0 is a quadratic polynomial inx8,y8 that makes the inte
gration straightforward. Generally,x depends upon the trans
verse coordinates due to the medium inhomogeneo
and/or nonlinearity, so that the corresponding integrals ox
enter the equations and should be calculated separately
f
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get a closed set of equations for the 12 beam variable
appears to be enough to use six orthogonality conditions~6!
with (m,n)5(0,0),(0,1),(1,0),(1,1),(0,2),(2,0). Solvin
these equations with respect to the derivatives, we fin
get:

dI

dz
5I S j1«2

^20ux9u00&

2A2
2

^02ux9u00&

2A2
2

^00ux9u00&
2 D ;

~7!

dh

dz
5hF2~j cos2 d1« sin2 d!2

1

A2
^20ux9u00&G ; ~8!

db

dz
5bF2~j sin2 d1« cos2 d!2

1

A2
^02ux9u00&G ; ~9!

dj

dz
5j22h2 cos2d2b2 sin2 d1

1

A2
@h^20ux8u00&cos2 d

1b^02ux8u00&sin2 d#1
Ahb

2
^11ux8u00&sin 2d; ~10!

d«

dz
5«22h2 sin2d2b2 cos2 d1

1

A2
@h^20ux8u00&sin2 d

1b^02ux8u00&cos2 d#2
Ahb

2
^11ux8u00&sin 2d;

~11!

dw

dz
5sin 2d

h1b

2~h2b!
~«2j!1

Ahb

2~h2b!
^11ux9u00&;

~12!

du

dz
5sin 2d

b22h2

2~j2«!
2

Ahb

2~j2«!
cos 2d^11ux8u00&

2
sin 2d

2A2~j2«!
@b^02ux8u00&2h^20ux8u00&#;

~13!

dxI

dz
5a cosu1g sinu1

sinw

4Ab
^01ux9u00&

2
cosw

4Ah
^10ux9u00&; ~14!

dyI

dz
5a sinu2g cosu2

cosw

4Ab
^01ux9u00&

2
sinw

4Ah
^10ux9u00&; ~15!
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da

dz
52g

du

dz
1

Ah

4
cosd^10ux8u00&2

Ab

4
sind^01ux8u00&

2
j

4Ab
sind^01ux9u00&1

j

4Ah
cosd^10ux9u00&; ~16!

dg

dz
5a

du

dz
2

Ah

4
sind^10ux8u00&2

Ab

4
cosd^01ux8u00&

2
«

4Ab
cosd^01ux9u00&2

«

4Ah
sind^10ux9u00&.

~17!

Here d5w2u is the angle of the beam spot rotation wi
respect to the wave front. The equation for arg(A) is omitted
since this variable does not enter all other equations a
therefore, does not affect the dynamics of the system@16#.

The validity of the generalized Gaussian approximat
has been tested by comparison of the results with thos
direct integration of the paraxial wave equation using diff
ent numerical schemes@23,24#. In the discussion we sha
dwell on this problem for more detail.

III. DYNAMICS OF THE BEAM VARIABLES IN A
PARABOLIC WAVEGUIDE

Consider, for example, a transparent waveguide med
with parabolic profile of linear refraction index and Ke
nonlinearity

x85x0S 12
x21y2

R0
2 D 1xNLucu2, x950.

In this case, the integration overx8,y8 to calculate the matrix
elementŝ nmux8ukl& in the right-hand sides of Eqs.~7!–~17!
is easily performed analytically. We get

^01ux8u00&5
x0

R0
2Ab

~xI sinw2yI cosw!;

^10ux8u00&52
x0

R0
2Ah

~xI cosw1yI sinw!;

^11ux8u00&50; ^02ux8u00&5
x0

R0
2

1

2A2b
1I

xnl

4A2
;

^20ux8u00&5
x0

R0
2

1

2A2h
1I

xnl

4A2
. ~18!

Equations~7!–~17! define a finite-dimension dynamica
system, which is obviously nonlinear, even whenxnl50. To
decide formally whether this system is conservative or di
pative, let us consider the divergence of the phase velo
vectorF8 whose coordinates are the right-hand sides of E
~7!–~17!:
d,

n
of
-

m

i-
ty
s.

div~F8!5Sp~J!55«15j1cos 2d K h1b

h2b
~«2j!2

b22h2

j2«

1
b2h

8~«2j!
IxnlL ,

whereJ is the Jacobian matrix.
To demonstrate the long-trace behavior of div(F8) we

plotted the distance between the adjacenti th andi 11th ze-
ros of the integral*0

zdiv(F8)dz, evaluated numerically, ver
sus i ~Fig. 1!. The complicated periodical behavior of th
integral is evidence for the zero mean value of the div
gence, and, therefore, the dynamical system is conserva

Our choice of the susceptibility allows a substantial
duction of the system dimension from eleven to seven du
the separation of the variablesxi ,yi ,a,g that describe the
misalignment of the beam. Moreover, Eqs.~14! and~15! can
be easily solved analytically and yield harmonic oscillatio
having the periodT154pR0 /Ax0. Further reduction to five
dimensions occurs under the initial condition ofd50. Then,
w andu are constants that means invariant orientation of
propagating beam spot and phase front. In this case,
equations fora,g possess harmonic solutions with the sam
period T1. Physically, it means that in a linear parabo
waveguide, the projection of the beam spot center trajec
on the transverse plane is, generally, an ellipse.

A. Stationary solutions

The conditions of the stationary beam propagation co
sponding to nonlinear waveguide modes can be written
follows:

d50, h5b5Ixnl/161AI 2xnl
2 /1621x0 /~4R0

2!,

«5j50.

In this case the dimension of the system is reduced to fi
which allows an analytical study of its stability.

The eigenvalues of the Jacobian matrix on the station
solution are

FIG. 1. On the evaluation of the phase velocity divergen
separation between the neighboring rootszi of the equation
*0

zdiv(F8)dz50 versusi.
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l150

l2,356 iAx0/Ro

l4,556 i S Ixnlh

4
1

x0

R0
2D 1/2

. ~19!

The real parts of all eigenvalues~Lyapunov exponents! are
zero. This corresponds to a Hopf-like bifurcation in whi
the stationary points of the phase space lose their stabilit
expelling a trajectory. Below we shall prove that this traje
tory is a stable orbit whenxnl is zero.

B. Periodical and quasiperiodical solutions

Consider a linear waveguide (xnl50). In general, the sta
bility analysis of periodical solutions requires explicit calc
lation of the monodromy matrixY. However, we can avoid
this calculation by making use of the numerical observat
that the periodT of an oscillating solution of Eqs.~7!–~17! is
equal to the periodTlin of the corresponding solutionglin of
the linearized equations. The monodromy matrixY can be
found from the relationglin(z1T)5Y(T)glin(z). Since we
observedT5Tlin in all numerous examples considered, w
can conclude thatY is a unit matrix. Hence, the multipliers o
the periodical solution are equal to one and the phase tra
tory is a stable orbit.

In low-dimensional systems, it is well known that for
‘‘supercritical’’ Hopf bifurcation, the eigenvalues have th
structurel56 iv, wherev is the frequency of the oscilla
tions arising. In our case forxnl50 the expressions~19!
yield the periodT252pR0 /Ax0. Note, that 2T25T1, where
T1 is the period of the harmonic motion of the beam as
whole. We can summarize that in a linear waveguide,

FIG. 2. Phase shift irregularity effect~a! and phase locking of
dynamical variables (h,xI) at xnl50.07 (a), 0.09 (b).
y
-

n

c-

a
e

beam dynamics is characterized by a superposition of st
nonharmonic oscillations of the inner variables~intensity,
spot dimensions, wave front curvature, etc.! with the period
T2 and stable harmonic oscillations of the misalignment va
ables with the periodT152T2.

Under the conditionxnlÞ0 ~nonlinear waveguide! the ei-
genvaluesl4,5 ~19! become dependent on the dynamic
variables. In this case, a quasiperiodical regime takes pl
This is a manifestation of nonlinear interaction~cross-
modulation! of the dynamical variables due to which the ne
frequencies arise that are not integer multiples of each ot

FIG. 3. Poincare´ section in (h,j) projection. Hopf bifurcation
~a!, ~b! and mutual phase locking betweenI, h, andj ~c!.
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To visualize and interpret the nonlinear dynamics of
beam variables we used the Poincare´ map and phase portra
methods. In all examples presented below, the Poincare´ sec-
tion surface has been taken asI 5const for the sake of cleare
interpretation. Generally, the birth of a quasiperiodical
gime corresponds to a bifurcation of a periodic orbit into
invariant manifold. In the Poincare´ map this can be seen as
Hopf-like bifurcation of the stationary points@Figs. 3~a! and
3~b!#.

The results presented below were obtained under the
lowing initial conditions:

I 550, h50.7, b50.5, «520.4, j520.1,

xI50.02, yI50.01, a50.01, g520.01.

We fixed the linear waveguide parameters asx055, R0
51.5 and varied the Kerr coefficientxnl .

We start from demonstrating the typical effects that ar
under the initial conditiond(0)50. As mentioned above, in
this cased(z)50 for any z, i.e., the beam has no twis
Sweeping the parameterxnl across the interval~0.08, 0.095!
we found a number of nonlinear resonances where the m
festations of phase locking involving two or more variab
could be seen. For couples of variables, this effect is ea
detected by means of phase portraits. Figures 2~a! and 2~b!
shows the most informative projection of the phase traject
which reveals the mutual phase locking between the m

FIG. 4. Birth of cycles in the section (h,j) for zero initial twist
~a!, ~b! and degeneration of this effect for the beam with twist~c!.
e

-

l-

e

ni-

ly

y
s-

alignment variables (xI ,yI ,a,g) and the variables
(h,b,«,j) corresponding to the ‘‘inner’’ degrees of freedo
of the beam.

Since the Poincare´ section surface may be chosen in
arbitrary way, one can observe the mutual phase locking
more than two dynamical variables. A transformation of t
everywhere dense invariant manifold into an approximat
closed orbit is displayed on the Poincare´ map as a consider
able reduction of the number of distinct points~see, for ex-
ample, Fig. 3! provided that the number of intersections
fixed. In the vicinity of the phase-locking point one can o
serve nonstability of the relative phase shift of the variab
h andxI @Fig. 2~a!#.

As xnl increases, the mutual modulation of the variab
(h,j) @or (b,«)# leads to the generation of a cycle. Th
phenomenon can be clearly seen, for example, in the pro
tion of the phase trajectory onto the plane (h,j), presented
in Figs. 4~a! and 4~b!.

To make the nature of cycle generation more clear
used the spectral representation ofh ~Fig. 5!. A shift of the
maximum of spectral intensity distribution is seen whenxnl
grows.

Now consider a more general case of a beam with n
zero twist (dÞ0). Formally, one could expect more com
plexity in the beam behavior due to the additional degree
freedom. However, it is not so, and the dynamics of t
beam actually appears to be even more simple than in
previous case ofd50. Our previous conclusions concernin
the phase locking effect remain valid, while in some oth
phenomena under discussion a qualitative difference appe
In particular, the comparison of Figs. 2~a! and 6 shows that
in the twisted beam, the irregularity of the phase shift dis
pears. Our calculations proved this statement to hold at
physically reasonable values of nonlinear refraction inde

FIG. 5. Spectral representation ofh at xnl50.08 (a),0.1 (b).
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It was also shown that atdÞ0, no cycle generation take
place under the same conditions as considered above. In
one can observe only a weak amplitude modulation of
variables@see Fig. 4~c! for ~h,j!#.

IV. DISCUSSION

The approximation of beams by best-fit generaliz
Gaussian functions has, obviously, a limited area of appl
tion. These functions are known to be exact solutions of
paraxial wave equation only in linear homogeneous me
and linear parabolic waveguides. Generally, the beam, e
initially single Gaussian, acquires distortions while propag
ing through a nonlinear and/or nonparabolic medium due
the contribution of higher-order waveguide modes@25#. To
estimate these distortions, we solved Eq.~1! numerically
@23# using the spectral method@7#. At each step of the propa
gation problem, the transverse field distribution was deco
posed in terms of more than 200 fixed Gauss-Laguerre ra
and azimuthal modes of the linear waveguide. Diffracti
and refraction were taken into account by means of the s
step scheme. One of the criteria for the integral evaluation
the quality of Gaussian field approximation was based on
mean-square deviation~MSD! from the result of the direc
numerical solution, i.e., the square field difference avera
over the beam cross section. For typicalxnl50.06, the ratio
of MSD to the peak intensity was found to be less than
percent@23#. We have also shown that under the conditio
of the present study, the non-Gaussian distortions of
beam profile cause minor changes in the values and dyn
ics of the beam spot dimensions and beam rotation angl

Our next test numerical experiment@24# has been per-
formed using the multiple-coordinate splitting, implicit abs
lutely stable scheme and complex scaling providing the c
rect transverse boundary conditions. The aim of the st
was to test the Gaussian flexible-mode approximation@Eqs.
~7!–~17!# in nonparabolic waveguides with possible leaka
of radiation. In the presence of leakage, the limitations of

FIG. 6. Twisted beam: the irregularity of the phase shift b
tweenh andxI disappears.
ead
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e
e

method described here are particularly strong. However,
have found many situations when, in spite of the substan
non-Gaussian distortions of the field profile, the dynamics
the beam variables, derived from the results of the dir
numerical solution, is very close to that given by the appro
mate model~7!–~17! of the present paper. In particular, th
is true in the vicinity of stationary points. Thus, we ha
strong enough evidence to conclude that in modera
nonlinear media, the generalized Gaussian approxima
can be used to describe the global beam behavior.

In Kerr-nonlinear media, the beams transversely limit
in two dimensions can collapse when the beam power
ceeds the threshold value@17#. In all the examples consid
ered above, the beam power was taken to be lower than
self-focusing threshold. We performed special calculation
observe the starting phase of the collapse at higher b
powers. Small-scale self-focusing, which is known to cau
transverse beam instability in Kerr media@18,19#, could not
be considered here since the original equations do not
the fluctuations into account.

Thus, we have generalized the previously proposed
proach of Refs.@8#, @11#, and @12# to derive a finite-
dimensional dynamical model of misaligned beam propa
tion. The approximate reduction of the wave bounda
problem to a Cauchy problem for a finite set of ordina
differential equations, made it possible to prove some g
eral dynamical properties and to study important regim
analytically. Simple numerical calculations allowed us
trace the long-term evolution of the beam variables and
reveal nontrivial effects, such as phase locking, cycle g
eration, etc.

From the dynamical point of view, this study may b
considered as an application to an optical system of the id
developed earlier for multifrequency interaction in statistic
mechanics@20# and in the dynamics of coupled nonline
oscillators @21,22#. Among other closely related problem
we would like to mention the evolution of coherent states
quantum optics@26–30#, since the coordinate representatio
of a coherent state is nothing but a Gaussian with varia
parameters. These parameters also satisfy nonlinear ev
tion equations, notwithstanding that the fundamental eq
tions of quantum mechanics are linear.

It seems interesting to extend this study over a wider cl
of waveguide systems including the media with different l
ear refraction profiles and nonlinear susceptibilities. In p
ticular, we plan similar investigations of beam dynamics
dissipative media.
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